Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of 1,13-diphenyl-2,4,6,8,10,12-hexaoxatridecane at 161 K

Jan W. Bats,^a* Christian Miculka^b and Christian R. Noe^c

^aInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, ^bIntervet Innovation GmbH, Zur Propstei, D-55270 Schwabenheim, Germany, and ^cInstitut für Pharmazeutische Chemie, Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria Correspondence e-mail: bats@chemie.uni-frankfurt.de

Received 9 November 2007; accepted 10 November 2007

Key indicators: single-crystal X-ray study; T = 161 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.082; data-to-parameter ratio = 15.0.

The title compound, $C_{19}H_{24}O_6$, crystallizes with two halfmolecules per asymmetric unit; each molecule has a crystallographic twofold axis passing through the central CH_2 group. The two molecules have different orientations of the terminal benzyl groups. The C–O bond lengths in the central section of each polyoxymethylene helix are almost constant. The average C–O bond length, corrected for librational motion, is 1.421 Å. The molecules are connected into layers by intermolecular C–H···O and C–H··· π (phenyl) interactions. The structure was previously reported by Noe, Miculka & Bats [(1994), Angew. Chem. Int. Ed. Engl. **33**, 1476–1478].

Related literature

The crystal structure of the title compound, determined at room temperature, was previously reported by Noe *et al.* (1994). An isomorphous crystal structure has been reported by Bats *et al.* (2007) and the structure of a closely related molecule by Bats *et al.* (2001). For the libration correction, see Farrugia (1999).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{24}O_6\\ M_r = 348.38\\ \text{Monoclinic, } C2\\ a = 40.733 \ (9) \text{ Å}\\ b = 5.4310 \ (10) \text{ Å}\\ \beta = 97.34 \ (2)^\circ \end{array}$

 $V = 1813.6 \text{ (8) } \text{Å}^{3}$ Z = 4Cu K\alpha radiation $\mu = 0.78 \text{ mm}^{-1}$ T = 161 (2) K $0.55 \times 0.50 \times 0.10 \text{ mm}$

Data collection

```
Enraf–Nonius CAD4
diffractometer
Absorption correction: numerical
using eight faces
(SHELXTL; Sheldrick, 1996)
T_{\rm min} = 0.690, T_{\rm max} = 0.933
3681 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.082$ S = 1.103429 reflections 228 parameters 1 restraint 3429 independent reflections 3311 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ 3 standard reflections frequency: 92 min intensity decay: <1%

H-atom parameters constrained $\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.12 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 1519 Friedel pairs Flack parameter: 0.23 (15)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2-H2···O4	0.95	2.44	3.333 (2)	158
$C8 - H8B \cdots O6$	0.99	2.60	3.511 (2)	153
$C10-H10\cdots O5^{i}$	0.99	2.58	3.477 (2)	150
$C18 - H18A \cdots O2^{ii}$	0.99	2.60	3.541 (2)	160
C19−H19A···O1 ⁱⁱⁱ	0.99	2.65	3.520 (2)	147
C19−H19 <i>B</i> ···O3 ^{iv}	0.99	2.64	3.542 (2)	152
$C3 - H3 \cdots CgB$	0.95	2.92	3.715	143
$C6 - H6 \cdots CgB^{v}$	0.95	3.00	3.745	136
$C13-H13\cdots CgA^{iii}$	0.95	3.07	3.704	126
$C16 - H16 \cdots CgA^{ii}$	0.95	3.19	3.913	134

Symmetry codes: (i) -x + 1, y, -z + 1; (ii) x, y, z + 1; (iii) x, y - 1, z; (iv) -x + 1, y - 1, -z + 1; (v) x, y + 1, z - 1. CgA and CgB are the centroids of the phenyl rings of molecules A and B, respectively.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1996); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2020).

References

- Bats, J. W., Kruse, J. & Noe, C. R. (2001). Private communication (refcode QULVOI). CCDC, 12 Union Road, Cambridge, England.
- Bats, J. W., Miculka, C. & Noe, C. R. (2007). Acta Cryst. C63, o190-o192.
- Enraf-Nonius. (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Noe, C. R., Miculka, C. & Bats, J. W. (1994). Angew. Chem. Int. Ed. Engl. 33, 1476–1478.
- Sheldrick, G. M. (1996). *SHELXTL*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, 04757 [doi:10.1107/S1600536807057741]

Redetermination of 1,13-diphenyl-2,4,6,8,10,12-hexaoxatridecane at 161 K

J. W. Bats, C. Miculka and C. R. Noe

Comment

The crystal structure of (I) was previously determined at room temperature (Noe *et al.*, 1994). A small but significant alternation of the C—O bond lengths was reported, which was not understood at that time. To clearify this point a redetermination of (I) at low temperature has now been undertaken. Crystals of (I) undergo a reversible phase transition at approximately 140 K, accompanied by a splitting of the reflection profiles in the low temperature phase. The measurements of (I) were performed at 161 K, which is well above the phase transition temperature.

The structure of (I) is isomorphous with the crystal structure of 1,17-diphenyl-2,4,6,8,10,12,14,16-octaoxaheptadecane (Bats *et al.*, 2007). The compound has two crystallographically independent molecules (Fig. 1), each displaying crystallographic twofold symmetry with the axis passing through the central CH_2 group. The two independent molecules have different orientations of the terminal benzyl groups. The phenyl group of molecule A is synperiplanar with the C7—O1 bond. The phenyl group of molecule B is almost perpendicular to the C17—O4 bond.

In the roomtemperature determination of (I) we observed a systematic C—O bond length variation. This effect is not observed in the present low temperature structure determination. Reprocessing of the room temperature data of (I) showed this bond length variation to result from using an inappropriate weighting scheme in a polar space group.

The C—O bond lengths in the central section of each helix is almost constant. An average C—O bond length of 1.416 Å is observed in the regions C8—C8(1 – x,y,-z) and C18—C18(1 – x,y,1-z). The polyoxymethylene helices (without the benzyl groups) behave as rigid bodies with rather large librational motion along the helix axis [46 (3)^{o2} for molecule A and 41 (3)^{o2} for molecule B], but with almost no librational motion about axes perpendicular to the molecular axis. The average C—O bond length, corrected for librational motion, is 1.421 Å. Values of 1.420 Å and 1.419 Å have been observed in the structures of the related compounds 1,15-diphenyl-heptaoxapentadecane (Bats *et al.*, 2001) and 1,13-diphenyl-hexaoxaheptadecane (Bats *et al.*, 2007).

The C—O—C bond angles in (I) range between 113.74 (10)° and 114.45 (8)° and are almost constant with an average value of 114.20°. The O—C—O angles range between 112.23 (12)° and 113.14 (11)° with a average values of 112.58°. The C—O—C—O torsion angles vary between 60.80 (14)° and 68.74 (14)° with an average value of 65.74°. Almost constant torsion angles, corresponding to an undisturbed helix, are found in molecule A. The helix of molecule B is slightly bend, resulting in deviations of the C—O—C—O torsion angles by up to 4° from their average value.

The crystal packing of (I) is stabilized by a number of intermolecular C—H···O and C—H··· π (phenyl) interactions. It is similar to the crystal packing of the isomorphous compound reported by Bats *et al.* (2007).

Experimental

Compound (I) was prepared as described by Noe *et al.* (1994). Thin plates were obtained by crystallization from chloro-form-hexane (1:1) at low temperature.

Refinement

The H atoms were located in a difference Fourier map and were refined as riding with $C(sp^2)$ —H = 0.95 Å, $C_{secondary}$ —H = 0.99 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. Friedel opposites were not merged. The absolute structure was determined from the anomalous scattering contribution of the O atoms, using 1519 Friedel pairs. The thermal motion analysis was performed with the *WinGX* program package (Farrugia, 1999).

Figures

Fig. 1. The structures of the two independent molecules of (I), with the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level. Molecule A is at the top and molecule B at the bottom. Unlabelled atoms are related to labelled atoms by the symmetry operator (1 - x, y, -z) in molecule A and by (1 - x, y, 1 - z) in molecule B.

1,13-diphenyl-2,4,6,8,10,12-hexaoxatridecane

Crystal data	
$C_{19}H_{24}O_{6}$	$F_{000} = 744$
$M_r = 348.38$	$D_{\rm x} = 1.276 {\rm ~Mg~m}^{-3}$
Monoclinic, C2	Cu $K\alpha$ radiation $\lambda = 1.54180$ Å
Hall symbol: C 2y	Cell parameters from 25 reflections
<i>a</i> = 40.733 (9) Å	$\theta = 39-61^{\circ}$
<i>b</i> = 5.4310 (10) Å	$\mu = 0.78 \text{ mm}^{-1}$
c = 8.266 (3) Å	T = 161 (2) K
$\beta = 97.34 \ (2)^{\circ}$	Plate, colourless
V = 1813.6 (8) Å ³	$0.55\times0.50\times0.10\ mm$
Z = 4	

Data collection

Enraf–Nonius CAD4 diffractometer	$R_{\rm int} = 0.028$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 70.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 161(2) K	$h = -49 \rightarrow 48$
ω scans	$k = -6 \rightarrow 6$
Absorption correction: numerical using eight faces (SHELXTL: Sheldrick 1996)	$l = 0 \rightarrow 10$

$T_{\min} = 0.690, \ T_{\max} = 0.933$	3 standard reflections
3681 measured reflections	every 92 min
3429 independent reflections	intensity decay: <1%
3311 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 0.46P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.082$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.10	$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$
3429 reflections	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$
228 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.00125 (12)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 1519 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.23 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equivalent isotro	pic displacement	parameters ($(Å^2)$)

	x	У	Ζ	Uiso*/Ueq
01	0.41078 (2)	0.51161 (19)	0.28403 (11)	0.0377 (2)
O2	0.43216 (2)	0.4939 (2)	0.03376 (10)	0.0345 (2)
O3	0.48919 (2)	0.5043 (2)	0.12547 (10)	0.0335 (2)
O4	0.39454 (2)	0.04835 (18)	0.62151 (10)	0.0344 (2)
O5	0.45158 (2)	0.01186 (19)	0.70716 (10)	0.0338 (2)
O6	0.47152 (2)	-0.0039 (2)	0.45254 (10)	0.0346 (2)
C1	0.35059 (3)	0.4797 (3)	0.20153 (15)	0.0334 (3)
C2	0.34789 (3)	0.2676 (3)	0.29233 (16)	0.0328 (3)
H2	0.3660	0.2173	0.3689	0.039*
C3	0.31920 (3)	0.1275 (3)	0.27349 (19)	0.0439 (4)
Н3	0.3179	-0.0174	0.3367	0.053*

C4	0.29282 (4)	0.1978 (4)	0.1640 (2)	0.0590 (5)
H4	0.2731	0.1024	0.1511	0.071*
C5	0.29506 (4)	0.4070 (4)	0.0732 (2)	0.0658 (6)
Н5	0.2767	0.4564	-0.0023	0.079*
C6	0.32371 (4)	0.5474 (4)	0.08976 (18)	0.0513 (4)
H6	0.3250	0.6903	0.0245	0.062*
C7	0.38097 (4)	0.6406 (3)	0.2291 (2)	0.0441 (4)
H7A	0.3837	0.7256	0.1257	0.053*
H7B	0.3774	0.7683	0.3105	0.053*
C8	0.42210 (3)	0.3591 (3)	0.16613 (16)	0.0337 (3)
H8A	0.4042	0.2436	0.1239	0.040*
H8B	0.4410	0.2604	0.2179	0.040*
С9	0.46032 (3)	0.6437 (3)	0.07662 (16)	0.0347 (3)
H9A	0.4640	0.7473	-0.0180	0.042*
H9B	0.4562	0.7547	0.1668	0.042*
C10	0.5000	0.3592 (4)	0.0000	0.0323 (4)
H10	0.5184	0.2519	0.0475	0.039*
C11	0.34710 (3)	-0.1303 (3)	0.71490 (17)	0.0360 (3)
C12	0.33846 (4)	-0.3416 (3)	0.62612 (18)	0.0411 (3)
H12	0.3553	-0.4490	0.5981	0.049*
C13	0.30536 (4)	-0.3979 (3)	0.57764 (19)	0.0445 (4)
H13	0.2996	-0.5416	0.5148	0.053*
C14	0.28097 (4)	-0.2455 (3)	0.6206 (2)	0.0446 (4)
H14	0.2584	-0.2843	0.5875	0.054*
C15	0.28913 (4)	-0.0370 (3)	0.71130 (19)	0.0463 (4)
H15	0.2722	0.0662	0.7426	0.056*
C16	0.32216 (4)	0.0226 (3)	0.75710 (18)	0.0409 (3)
H16	0.3278	0.1687	0.8176	0.049*
C17	0.38279 (4)	-0.0641 (3)	0.76078 (17)	0.0443 (4)
H17A	0.3851	0.0520	0.8539	0.053*
H17B	0.3959	-0.2136	0.7934	0.053*
C18	0.42479 (3)	0.1719 (3)	0.65835 (16)	0.0341 (3)
H18A	0.4229	0.2918	0.7469	0.041*
H18B	0.4295	0.2653	0.5611	0.041*
C19	0.46035 (3)	-0.1411 (3)	0.58093 (17)	0.0351 (3)
H19A	0.4409	-0.2407	0.5366	0.042*
H19B	0.4781	-0.2557	0.6266	0.042*
C20	0.5000	0.1404 (4)	0.5000	0.0335 (4)
H20	0.4959	0.2478	0.5921	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0374 (5)	0.0430 (5)	0.0336 (5)	-0.0069 (5)	0.0086 (4)	-0.0066 (5)
O2	0.0294 (4)	0.0461 (6)	0.0278 (4)	0.0032 (4)	0.0029 (3)	-0.0015 (4)
O3	0.0292 (4)	0.0439 (5)	0.0270 (4)	-0.0025 (4)	0.0019 (3)	-0.0004 (4)
O4	0.0287 (4)	0.0461 (6)	0.0280 (4)	-0.0014 (4)	0.0025 (3)	0.0040 (4)
O5	0.0301 (4)	0.0414 (5)	0.0286 (4)	-0.0020 (4)	-0.0015 (3)	0.0011 (4)

O6	0.0320 (5)	0.0424 (5)	0.0285 (4)	0.0012 (4)	0.0000 (3)	-0.0009 (4)
C1	0.0348 (6)	0.0359 (7)	0.0312 (6)	0.0089 (6)	0.0110 (5)	-0.0002 (6)
C2	0.0293 (6)	0.0344 (7)	0.0346 (7)	0.0019 (5)	0.0036 (5)	-0.0003 (6)
C3	0.0391 (7)	0.0485 (8)	0.0461 (8)	-0.0071 (7)	0.0131 (6)	-0.0122 (7)
C4	0.0305 (8)	0.0827 (14)	0.0630 (11)	-0.0010 (8)	0.0033 (7)	-0.0340 (11)
C5	0.0425 (9)	0.1012 (17)	0.0484 (10)	0.0295 (10)	-0.0145 (7)	-0.0238 (10)
C6	0.0613 (10)	0.0583 (10)	0.0336 (7)	0.0280 (8)	0.0039 (7)	0.0018 (7)
C7	0.0484 (8)	0.0314 (7)	0.0570 (9)	0.0029 (7)	0.0238 (7)	0.0013 (7)
C8	0.0290 (6)	0.0370 (7)	0.0349 (7)	0.0005 (6)	0.0040 (5)	-0.0006 (6)
C9	0.0349 (7)	0.0350 (7)	0.0351 (7)	0.0010 (6)	0.0083 (5)	0.0014 (6)
C10	0.0275 (8)	0.0358 (10)	0.0330 (9)	0.000	0.0017 (7)	0.000
C11	0.0363 (7)	0.0425 (7)	0.0304 (7)	-0.0006 (6)	0.0088 (5)	0.0070 (6)
C12	0.0398 (7)	0.0411 (8)	0.0441 (8)	0.0051 (7)	0.0114 (6)	-0.0011 (7)
C13	0.0477 (8)	0.0374 (8)	0.0492 (8)	-0.0047 (6)	0.0095 (6)	-0.0039 (7)
C14	0.0359 (7)	0.0483 (8)	0.0511 (9)	-0.0052 (7)	0.0108 (6)	0.0035 (7)
C15	0.0418 (8)	0.0453 (9)	0.0541 (9)	0.0085 (7)	0.0145 (7)	-0.0002 (7)
C16	0.0466 (8)	0.0345 (7)	0.0426 (7)	-0.0004 (7)	0.0092 (6)	-0.0019 (6)
C17	0.0417 (8)	0.0610 (10)	0.0299 (7)	-0.0068 (7)	0.0029 (6)	0.0093 (7)
C18	0.0328 (6)	0.0351 (7)	0.0343 (7)	0.0007 (6)	0.0041 (5)	0.0005 (6)
C19	0.0310 (6)	0.0357 (7)	0.0377 (7)	-0.0011 (5)	0.0012 (5)	-0.0002 (6)
C20	0.0332 (9)	0.0321 (9)	0.0350 (9)	0.000	0.0033 (7)	0.000

Geometric parameters (Å, °)

1.4013 (16)	C8—H8B	0.9900
1.4247 (18)	С9—Н9А	0.9900
1.4141 (16)	С9—Н9В	0.9900
1.4198 (16)	C10—O3 ⁱ	1.4165 (15)
1.4136 (16)	C10—H10	0.9900
1.4167 (15)	C10—H10 ⁱ	0.9900
1.4018 (16)	C11—C12	1.383 (2)
1.4380 (16)	C11—C16	1.391 (2)
1.4130 (16)	C11—C17	1.498 (2)
1.4149 (17)	C12—C13	1.391 (2)
1.4135 (15)	C12—H12	0.9500
1.4184 (17)	C13—C14	1.374 (2)
1.387 (2)	С13—Н13	0.9500
1.389 (2)	C14—C15	1.375 (2)
1.509 (2)	C14—H14	0.9500
1.3865 (19)	C15—C16	1.389 (2)
0.9500	С15—Н15	0.9500
1.367 (2)	С16—Н16	0.9500
0.9500	С17—Н17А	0.9900
1.371 (3)	С17—Н17В	0.9900
0.9500	C18—H18A	0.9900
1.386 (3)	C18—H18B	0.9900
0.9500	С19—Н19А	0.9900
0.9500	С19—Н19В	0.9900
	1.4013 (16) 1.4247 (18) 1.4141 (16) 1.4198 (16) 1.4136 (16) 1.4136 (16) 1.4167 (15) 1.4018 (16) 1.4380 (16) 1.4130 (16) 1.4130 (16) 1.4149 (17) 1.4135 (15) 1.4184 (17) 1.387 (2) 1.389 (2) 1.509 (2) 1.3865 (19) 0.9500 1.367 (2) 0.9500 1.371 (3) 0.9500 0.9500 0.9500	$1.4013(16)$ $C8-H8B$ $1.4247(18)$ $C9-H9A$ $1.4141(16)$ $C9-H9B$ $1.4141(16)$ $C10-O3^i$ $1.4198(16)$ $C10-H10$ $1.4136(16)$ $C10-H10^i$ $1.4167(15)$ $C10-H10^i$ $1.4018(16)$ $C11-C12$ $1.4380(16)$ $C11-C16$ $1.4130(16)$ $C11-C17$ $1.4149(17)$ $C12-C13$ $1.4135(15)$ $C12-H12$ $1.4184(17)$ $C13-C14$ $1.387(2)$ $C14-C15$ $1.509(2)$ $C14-H14$ $1.3865(19)$ $C15-C16$ 0.9500 $C15-H15$ $1.367(2)$ $C16-H16$ 0.9500 $C17-H17A$ $1.371(3)$ $C17-H17B$ 0.9500 $C18-H18B$ 0.9500 $C19-H19A$

С7—Н7А	0.9900	C20—O6 ⁱⁱ	1.4135 (15)
С7—Н7В	0.9900	С20—Н20	0.9900
С8—Н8А	0.9900	C20—H20 ⁱⁱ	0.9900
C8—O1—C7	114.31 (10)	O3 ⁱ —C10—H10 ⁱ	109.1
C9—O2—C8	114.11 (9)	O3—C10—H10 ⁱ	109.1
C9—O3—C10	114.45 (8)	H10—C10—H10 ⁱ	107.9
C18—O4—C17	113.74 (10)	C12—C11—C16	118.94 (13)
C18—O5—C19	114.16 (10)	C12—C11—C17	120.43 (14)
C20—O6—C19	114.45 (8)	C16—C11—C17	120.61 (14)
C2—C1—C6	118.02 (14)	C11—C12—C13	120.46 (14)
C2—C1—C7	121.31 (12)	C11—C12—H12	119.8
C6—C1—C7	120.58 (14)	C13—C12—H12	119.8
C3—C2—C1	121.25 (13)	C14—C13—C12	119.96 (15)
С3—С2—Н2	119.4	C14—C13—H13	120.0
C1—C2—H2	119.4	С12—С13—Н13	120.0
C4—C3—C2	120.07 (17)	C13—C14—C15	120.30 (14)
С4—С3—Н3	120.0	C13—C14—H14	119.8
С2—С3—Н3	120.0	C15—C14—H14	119.8
C3—C4—C5	119.47 (17)	C14—C15—C16	119.93 (14)
C3—C4—H4	120.3	C14—C15—H15	120.0
С5—С4—Н4	120.3	С16—С15—Н15	120.0
C4—C5—C6	121.05 (15)	C15—C16—C11	120.38 (14)
C4—C5—H5	119.5	С15—С16—Н16	119.8
С6—С5—Н5	119.5	С11—С16—Н16	119.8
C5—C6—C1	120.14 (16)	O4—C17—C11	108.10(11)
С5—С6—Н6	119.9	O4—C17—H17A	110.1
С1—С6—Н6	119.9	С11—С17—Н17А	110.1
O1—C7—C1	114.37 (12)	O4—C17—H17B	110.1
O1—C7—H7A	108.7	С11—С17—Н17В	110.1
C1—C7—H7A	108.7	H17A—C17—H17B	108.4
O1—C7—H7B	108.7	O4—C18—O5	113.14 (11)
C1—C7—H7B	108.7	O4—C18—H18A	109.0
H7A—C7—H7B	107.6	O5-C18-H18A	109.0
O1—C8—O2	112.58 (12)	O4C18H18B	109.0
O1—C8—H8A	109.1	O5-C18-H18B	109.0
O2—C8—H8A	109.1	H18A—C18—H18B	107.8
O1—C8—H8B	109.1	O5—C19—O6	112.23 (12)
O2—C8—H8B	109.1	O5-C19-H19A	109.2
H8A—C8—H8B	107.8	O6-C19-H19A	109.2
O3—C9—O2	112.45 (12)	O5-C19-H19B	109.2
О3—С9—Н9А	109.1	O6-C19-H19B	109.2
О2—С9—Н9А	109.1	H19A—C19—H19B	107.9
О3—С9—Н9В	109.1	O6—C20—O6 ⁱⁱ	112.66 (16)
O2—C9—H9B	109.1	О6—С20—Н20	109.1
Н9А—С9—Н9В	107.8	O6 ⁱⁱ —C20—H20	109.1
O3 ⁱ —C10—O3	112.41 (16)	O6—C20—H20 ⁱⁱ	109.1
O3 ⁱ —C10—H10	109.1	O6 ⁱⁱ —C20—H20 ⁱⁱ	109.1

O3—C10—H10	109.1	H20—C20—H20 ⁱⁱ	107.8		
C6—C1—C2—C3	-0.5 (2)	C16—C11—C12—C13	1.0 (2)		
C7—C1—C2—C3	176.24 (13)	C17—C11—C12—C13	-177.30 (14)		
C1—C2—C3—C4	-0.1 (2)	C11-C12-C13-C14	-1.2 (2)		
C2—C3—C4—C5	0.2 (2)	C12-C13-C14-C15	0.1 (2)		
C3—C4—C5—C6	0.4 (3)	C13-C14-C15-C16	1.2 (2)		
C4—C5—C6—C1	-1.0 (2)	C14-C15-C16-C11	-1.4 (2)		
C2-C1-C6-C5	1.0 (2)	C12-C11-C16-C15	0.3 (2)		
C7—C1—C6—C5	-175.69 (14)	C17—C11—C16—C15	178.64 (13)		
C8—O1—C7—C1	70.25 (15)	C18—O4—C17—C11	165.43 (12)		
C2-C1-C7-O1	30.25 (18)	C12-C11-C17-O4	80.05 (17)		
C6—C1—C7—O1	-153.13 (13)	C16-C11-C17-O4	-98.27 (16)		
C7—O1—C8—O2	66.21 (14)	C17—O4—C18—O5	67.37 (14)		
C9—O2—C8—O1	66.01 (14)	C19—O5—C18—O4	68.74 (14)		
C10—O3—C9—O2	65.90 (13)	C18—O5—C19—O6	63.10 (13)		
C8—O2—C9—O3	66.15 (13)	C20—O6—C19—O5	60.80 (14)		
C9—O3—C10—O3 ⁱ	66.17 (9)	C19—O6—C20—O6 ⁱⁱ	66.99 (9)		
Symmetry codes: (i) $-x+1$, y, $-z$; (ii) $-x+1$, y, $-z+1$.					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С2—Н2…О4	0.95	2.44	3.333 (2)	158
С8—Н8В…Об	0.99	2.60	3.511 (2)	153
C10—H10…O5 ⁱⁱ	0.99	2.58	3.477 (2)	150
C18—H18A····O2 ⁱⁱⁱ	0.99	2.60	3.541 (2)	160
C19—H19A···O1 ^{iv}	0.99	2.65	3.520 (2)	147
C19—H19B···O3 ^v	0.99	2.64	3.542 (2)	152
С3—Н3…СдВ	0.95	2.92	3.715	143
C6—H6…CgB ^{vi}	0.95	3.00	3.745	136
C13—H13···CgA ^{iv}	0.95	3.07	3.704	126
C16—H16…CgA ⁱⁱⁱ	0.95	3.19	3.913	134

Symmetry codes: (ii) -*x*+1, *y*, -*z*+1; (iii) *x*, *y*, *z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*+1, *y*-1, -*z*+1; (vi) *x*, *y*+1, *z*-1.

